On solving trust-region and other regularised subproblems in optimization

نویسندگان

  • Nicholas I. M. Gould
  • Daniel P. Robinson
  • H. Sue Thorne
چکیده

The solution of trust-region and regularisation subproblems which arise in unconstrained optimization is considered. Building on the pioneering work of Gay, Moré and Sorensen, methods which obtain the solution of a sequence of parametrized linear systems by factorization are used. Enhancements using high-order polynomial approximation and inverse iteration ensure that the resulting method is both globally and asymptotically at least superlinearly convergent in all cases, including in the notorious hard case. Numerical experiments validate the effectiveness of our approach. The resulting software is available as packages TRS and RQS as part of the GALAHAD optimization library, and is especially designed for large-scale problems. 1 This work was supported by the EPSRC grants EP/E053351/1 and EP/F005369/1. 2 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, England, EU. Email: [email protected], [email protected] . Current reports available from “http://www.numerical.rl.ac.uk/reports/”. 3 Oxford University Computing Laboratory, Numerical Analysis Group, Wolfson Building, Parks Road, Oxford, OX1 3QD, England, EU. Email: [email protected], [email protected] . Current reports available from “http://web.comlab.ox.ac.uk/oucl/publications/natr/”. Computational Science and Engineering Department Atlas Centre Rutherford Appleton Laboratory Oxfordshire OX11 0QX February 11, 2009 On solving trust-region and other regularised subproblems in optimization 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

A Feasible Trust-Region Sequential Quadratic Programming Algorithm

An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration, and perturbing the resulting step to retain feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other trust-region SQ...

متن کامل

Integration of Sequential Quadratic Programming and Domain Decomposition Methods for Nonlinear Optimal Control Problems

We discuss the integration of a sequential quadratic programming (SQP) method with an optimization-level domain decomposition (DD) preconditioner for the solution of the quadratic optimization subproblems. The DD method is an extension of the well-known Neumann-Neumann method to the optimization context and is based on a decomposition of the first order system of optimality conditions. The SQP ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010